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A conditioning function is generally used to discriminate between the turbulent and 
non-turbulent zones in intermittent flows. Any fluid-mechanical property is condi- 
tioned by multiplying it by the intermittency function. A formalism is developed in 
which some integrals of the fluid-mechanical variables at  the interface are important 
ingredients with a precise physical meaning. The present ideas may prove to be 
useful in turbulence dynamics and turbulent mixing of scalars. 

The use of conditioned sampling techniques in turbulence is a relatively new pro- 
cedure in experimental research (e.g. Libby 1975, 1976 and references therein) and 
analmost unexplored field for theoreticians. Recently Libby (1 975,1976) has developed 
some theoretical ideas, predicted some conditioned variables and compared the results 
with some available measurements. The crucial point in Libby’s work is the postulate 
of a conservation equation for the intermittency function with an unknown source 
term. Some expressions for the latter have been proposed by Tutu (1976). 

A n  indicator function, similar to the intermittency function, has been used in the 
description of the flow through ‘non-swelling’ porous media (e.g. Saffman 1971) and 
‘ swelling ’ porous media (Dopazo & Corrsin 1977). There exists a clear analogy between 
the formal conditioned problems of intermittent flow and flow through porous media, 
with the obvious dynamic and boundary-condition differences. Saffman’s (1971) 
formalism was correctly derived, made more accessible and extended to non- 
stationary nonlinear flow through deformable porous media by Dopazo & Corrsin 
(1977). This formalism is specialized here to the study of intermittent flows. 

The equations governing the motion of a fluid in a turbulent/non-turbulent flow are 

with 

where u is the velocity, p the density, p the pressure, Q the viscous stress tensor and 
,u the viscosity. The intermittency function I(x, t )  is defined by 

1 if the point (x, t )  is in the turbulent region, 

( 0 if the point (x, t )  is in the non-turbulent region. 
I(x,t) = 

The intermittency is defined as the probability of (x, t )  being in the turbulent region, 
i.e. y(x, t )  = 3% t ) ,  (4) 
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where the overbar denotes the ensemble average. If the flow is statistically stationary 
the intermittency is also defined as the fraction of time that the point x is in the 
turbulent region, and time and ensemble averages are usually equated. 

Let Q(x,  t )  be any fluid-mechanical property. It is easy to show that 

V ( Q 4  = V(&l) ( 5 )  

using generalized functions or component notation. In vector notation, however, 
some precise arguments are necessary and are presented in Dopazo & Corrsin (1977) .  
Relation (5) contradicts Saffman’s conclusion that ‘the operations of differentiation 
and ensemble averaging do not commute for ciiscontinuous functions ’. It can similarly 
be shown that 

a(Qr)/at = a(Q7lat .  (6) 

To condition the conservation equations the ensemble averages of 1 VQ and I 8Qlat 
are needed. The mean value of the identity 

I V Q  = V ( Q I ) - Q V I  ( 7 )  

over a control volume Y- is thus taken. Note that V I  is different from zero only at  the 
interface; there V I  has the absolute value of a Dirac delta-function and the direct,ion 
of the normal n to the interface pointing towards the turbulent region. If one sub- 
sequently integrates the last term of (7) along the normal to the interface, lets Y 
go to zero and takes the ensemble average of the remaining equality it is easy to show 
that 

where X ( x ,  t )  = 0 is the equation of the turbulent/non-turbulent interface. A n  expres- 
sion similar to (8) was presented by Saffman (1 971)  but with an incorrect interpretation 
of the terms; the notation used here is less ambiguous. Similarly, 

Now al lat  = d( t - t , ) ,  t, being the time at  which the interface crosses the point x. 
Note that the last term in (9)  arises from the motion of the interface and thus the 
height of the control volume is u B d t . n ,  where us is the velocity of the interface. 
Integrating over t ,  letting nY. go to zero and ensemble averaging, one obtains 

The derivation of (8) and (10)  appears in Dopazo & Corrsin (1977) .  
It is important to notice that the unconditioned fluctuation level Q’ of any fluid- 

mechanical variable Q does not convey any direct information about the zone (turbu- 
lent or irrotational) fluctuations Q; and Qh. The unconditioned mean @ enters the 
definition of Q’, and hence Q’ contains information from both the turbulent and the 
irrotational region. Let us use time averages as an illustration. Let TT and TN be the 
fractions of the total observation time T that the probe spends in the turbulent and 
irrotational fluid respectively. Similarly let RT and R, be the domains of integration 
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for turbulent and irrotational zone averages. The topological union of RT and RN is 
equal to the tot'al integration domain Q. The total signal Q may then be decomposed 
into Q, = IQ for t E RT and Qo = ( 1  - I )  Q for t E Q N .  The following averages are now 
defined: 

I& = lim $ l h l I Q d t  = lim - 
- 

T-+ m T+ w 

( I - - ) & =  lim F / n ( l - I ) Q d t =  1 

T-P w 

Taking into account the fact that 

the zone averages can be written as 
- 1 I& 

T p - + m T T  Q p  Y '  
Q 1 =  lim -1 Q d t = -  

= lim - Qdt  = ( 1  -4Q 
1-Y - T*+m TN 's C l f l  

The real zone fluctuations will be defined by 
- 

Qi = Ql-Q1 = I Q - Q 1  for t E i & ,  

&b = Qo-Oo = ( l - - I ) Q - Q 0  for tEQN. 
Therefore 

- 
Q; = lirn T,  l 1 nT ( I Q - G ) d t = O  

T p - f m  TT 's h l p  Y 

TT+ m 

and similarly a = 0.  
For the products of the fluctuations of two random variables P and Q we have 

P;Q; = I P Q - ~ l I Q - Q , I P + ~ l ~ l  for t E Q Z T .  

Zone averaging yields 
F Q  -- 

P;Q;dt  =-- Pi Q1. p;&; = lim - 

This decomposition is simpler than Libby's (1975, formula (9)) and does not mix 
conditioned and unconditioned averages in the same definition, thanks to the use of 
real zone fluctuations. 

Use of (8) and (10) with Q = 1 yields 

For statistically stationary flows (12)  expresses the fact that positive and negative 
values of us . n of the same magnitude are equally probable. The computation of ( 1  1) 
or (12)  requires detailed knowledge of the interface dynamics, i.e. the equation 

15-2 
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S ( x , t )  = 0, and thus the detailed geometry of the interface is involved. If us is de- 
composed into u, the velocity of a fluid element, and - Vn, the speed of advance of 
an element of the surface relative to the fluid element at the same point (Phillips 1972), 
(12) may be written as 

(13) 
1 a r = -  ' u .  ndS+ lim Tjs  V ~ S ,  

where the last term can be considered as the entrainment per unit volume divided by 
the density p ,  i.e. the mass entrainment per unit mass. 

The conditioned equations are obtained by multiplying ( 1 )  and (2) by I ,  and making 
use of (5), (6), (8) and (10)-(12). Equation (1)  yields 

at ~5 7 S, Y - + O  

If the flow is statistically stationary (14) reduces to 

and (G)j, the conditioned mean velocity in the turbulent region, is non-solenoidal. 
Note that Libby's definition is different from the one above. Thus the ensemble average 
of w in Libby (1975) is identical to the right-hand side of (15), i.e. the entrainment 
per unit mass. 

The conditioned momentum equation is 

where 
1 a 

F'(x,t) = - lim - ( - p 8 i i i + a , j ) n j d S + v  - lim ( u i n j + u j n i ) d X  (17) 
axj Y + O  

is the mean force per unit mass that the turbulent fluid exerts on the non-turbulent 
fluid. The first term on the right-hand side of (16) is the momentum flux through the 
interface, i.e. the ith component of the momentum entrained into the turbulent region 
from the potential-flow zone. The last term in (17) is an additional viscous force of 
the turbulent on the non-turbulent region. The physical meaning of the latter as well 
as a different mathematical way to recover it may be clearly seen in Landau & Lifshitz 
(1959) and Batchelor (1970) in connexion with the viscosity of suspensions. It was 
to be expected that the relative forces between turbulent and non-turbulent fluid 
should enter the conditioned dynamic equations. Multiplying (2) by I and taking the 
ensemble average is equivalent to isolating a control volume of the turbulent fluid 
from the rest of the flow; the interactive force between this control volume and the 
rest of the flow must hence be included in the dynamic equations for the resulting 
conditioned variables. 

If the flow is statistically stationary (16) becomes 
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The conditioned energy tensor Iuiuj may be decomposed into 

- 
and IP = Y E .  (20) 

In (19) only variables evaluated in the turbulent fluid appear. This is different from 
Libby’s decomposition, in which turbulent and non-turbulent averages are present. 

Similar equations may be derived for the non-turbulent region by multiplying (1) 
and (2) and 1 - I ,  taking the ensemble average and using expressions similar to (5)- 
(12 )  with 1 replaced by 1 - I  (for the formal procedure see Dopazo & Corrsin 1977). 
I$ in (16) appears with the sign reversed in the equation for (1  - y )  (ug)i. The equations 
for (F)i and (%& are thus coupled through this interaction term, i.e. through the 
interface dynamics. In  the equations for the traditional unconditioned average 
velocity ~ ( c ) ~  + (1  - 

The conditioned kinetic energy equation can easily be obtained by following the 
above formal steps. An unknown variable that enters this equation is 

neither the entrainment nor the force Fi appears. 

W ( x , t )  = lim - ( -p&, i+u i j )n ju idS ,  ( 2 1 )  
Y - 0  9,- Js 

the mechanical work done by the turbulent fluid upon the non-turbulent fluid. The 
entrainment of turbulent kinetic energy also appears explicitly. 

The equivalent to equation ( 1 4 )  in Libby’s paper can easily be derived by averaging 

(22 )  (1 - I )  ui(aui/axj - auj/axi) = 0. 

After some manipulation one gets 

(uiuinj - $uiujni) dS = 0. ( 2 3 )  

The last term in ( 2 3 )  is associated with momentum fluxes through the’interface. In 
the limit y+O this term tends to zero and (u0), tends to a constant vector; ( 2 3 )  then 
becomes 

which is the Corrsin-Kistler equation in our notation. 
In  order to solve (15) and (18) one still has to model the unknowns and close the 

conditioned Reynolds-stress terms in (19).  An attempt to achieve the modelling is 
underway at the present time and these results will be the subject of a future paper. 

Thanks to a formalism initiated by Saffman (1971) ,  substantially extended and 
clarified by Dopazo & Corrsin (1977)  in the context of porous media, and specialized 
here to turbulence, it is now possible to formulate conditioned intermittent turbulent 
flow equations in which physically meaningful unknown variables appear. This is an 
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alternative to Libby’s method, in which an equation for I with an unknown source 
term is postulated; postulating the equation for I is equivalent to specifying the 
interface dynamics, i.e. the equation S(x, t )  = 0, and it is not required in the above 
formulation. In the present formalism knowledge of the equation S(x, t )  = 0 is how- 
ever necessary in order to compute the surface integrals entering the conditioned 
equations. In some respects the present formalism has advantages over Libby’s: 
there is no need for an intermittency-function conservation equation, only physically 
meaningful unknowns appear in the conditioned equations and one expects to be 
able to model these terms more easily than those involving an unspecified w and 
derivatives of I. Once some progress has been achieved in understanding the geometry 
and dynamics of the interface the right-hand side of ( I  1) will be directly predictable, 
and thus it will be possible for y to be obtained. Some research along Phillips’ (1972) 
lines seems to be needed. 

The ideas contained in this brief note may prove to be of importance in the investi- 
gation of the interface dynamics, conditioned turbulence equations and turbulent 
mixing of reactive and passive scalars. 
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